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Section S1 Variability in Galloanserae TLR basic protein features  

All examined TLR proteins showed typical TLR structure composed of an initial signal 

peptide, followed by extracellular LRRs, a transmembrane region and a TIR domain. The 

signal peptide extend was uniform in its length in TLR4 and TLR7 in all included species (30 

aa and 25 aa, respectively) but it differed in size among Galloanserae species in TLR5 with 

length ranging from 16 aa to 21 aa [See Additional file 1, Table S3]. Also the number of 

predicted LRRs remarkably varied among orthologous TLRs [See Additional file 1, Table 

S3]. Both N-terminal and C-terminal caps of the most external LRRs (forming LRRNT and 

LRRCT, respectively) were present only in TLR7, while in TLR4 and TLR5 only the C-

terminal caps were predicted, uniformly in all investigated species. 

 

Section S2 Evolution of TLR secondary structures within the Galloanserae lineage  

The secondary structure variability detected in the present study in the Galloanserae TLRs 

was low. The ECDs did not differ from the intracellular regions in the level of variability of 

the predicted secondary structures. Nevertheless, regions between residues 225-311, 412-438 

and 628-636 in TLR4 and 407-431 and 623-626 in TLR5 were variable among individual 

species. TLR7 was the most conservative of the TLRs investigated. Although the predicted 

variability seems only minor, in TLR4 the first two regions comprise sites known in 

mammals to be involved in  MD-2 binding, TLR4–TLR4 dimerization, and even LPS binding 

(Ohto et al. 2012). These results, thus, suggest that some of the protein conformation 

variability within the Galloanserae clade could be associated with potential differences in the 

mode of ligand binding.   

 

Section S3 Variability in features of predicted ligand-binding residues  

In TLR4 the amino acid binding features at the functional sites known in mammals remained 

probably unchanged in 19 out of 29 sites (66%). Similarly, in TLR5 32 out of 56 (57%) 

functional sites remained physiochemically similar. The difference between zebrafish 

functional sites identified by Yoon et al. (2012) and their avian counterparts is dramatic 

(physiochemical similarity only in 23 out of 45) and further increased by missing amino 

acids. This indicates that flagellin binding is probably not completely identical in fish and 

amniotes. Nonetheless, if we do not include sites that were recognised only in zebrafish and 
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focus only on those predicted by Andersen-Nissen et al. (2007) for mammals, then 10 out of 

the 11 (91%) functional sites are conservative. Very similar to this is the situation in TLR7 

where 7 out of 9 functional sites show physiochemical conservatism. Little (TLR5) or no 

(TLR7) interspecific polymorphism in the mammal-predicted ligand-binding residues within 

the Galloanserae lineage, however, suggests that the ligand-binding properties in both these 

proteins may be reasonably conserved between birds and mammals. Intriguingly, in TLR4 the 

residues 449 (= HoSaTLR4-F440) and 472 (= HoSaTLR4-F463) that have been previously 

reported as key for LPS binding (Resman et al. 2009) are altered in birds when compared to 

mammals. At all these sites nonpolar F residues are required in humans (Resman et al. 2009). 

In contrast, in Galloanserae birds there is uniformly aromatic hydrophilic Y at site 449 and 

tiny hydrophilic S at site 472. This means that either the model proposed by Resman et al. 

(2009) is incorrect or, more likely, that there is a substantial difference between birds and 

mammals in TLR4-MD-2-LPS binding. Moreover, there are several sites in TLR4 (268, 397, 

428, 445 and 454) at which Galliformes systematically differ from Anserifomes. Most of 

these residues (268, 397 and 445) were found in humans to be involved in interaction with 

LPS (Park et al. 2009). This suggests differences in LPS binding between Galliformes and 

Anseriformes. Again, we found only little interspecific variability in the predicted key 

binding residues within the two individual avian orders. Only limited polymorphism has been 

revealed on two well-known human functional SNP sites (Arbour et al. 2000; Rallabhandi et 

al. 2006). At the site of avian 303 which is identical to human D299G SNP position aspartic 

acid (D) was invariantly present (except for AnAnTLR4-N303).  Residues on position 408 

(equivalent to HoSaTLR4-T399I SNP) were variable, with proline being present in Galliform 

birds and alanine being present in Anseriform birds. 

 

Section S4 Analysis of positive selection 

Except for one position that was detected in the transmembrane domain (TMD) of TLR5, all 

positively selected sites detected in Galloanserae (19) were located in the extracellular 

domains (ECDs) [See Additional file 1, Tables S7 and S8]. Only one positively selected site 

(26 in TLR7) was present in the signal peptide, possibly influencing the TLR7 expression 

into membranes. Out of the 18 remaining positively selected sites identified in this study only 

five (TLR4: 343; TLR5: 180, 209, 342, 379) were located either precisely in or in close 

proximity to any of the predicted functionally important sites [See Additional file 1, Table 

S5]. Residues 343 in TLR4 and 180 and 379 in TLR5 seem to be potentially more 

evolutionarily relevant since the substitutions on these sites significantly alter amino acid 

properties and may, hence, affect ligand binding. 
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The ConSurf analysis [See Additional file 1, Table S9] identified 26, 28 and 25 reliably non-

conservative sites in TLR4, TLR5 and TLR7, respectively. Out of these, only one site (TLR7) 

belonged to the TIR domain, three (TLR4: 1, TLR5: 2) to TMD and two were located in the 

intracellular domain of TLR4 outside of the TIR domain. The functional effect of the 

substitutions on the TLR7 TIR position 919 is difficult to assess but the impact of the 

substitutions in the TMDs seem to be only unimportant. Six, one and one positions, 

respectively for TLR4, TLR5 and TLR7, belonged to signal peptide regions with possible 

effects on protein expression. In TLR4 substitutions at four sites (40, 268, 270 and 471) 

might affect TLR4-MD-2 dimerization. Substitutions at three sites could influence LPS 

binding by TLR4 (268, 444 and 471). Finally, substitutions at two sites could affect TLR4-

TLR4 dimerization (444 and 512). Except for the substitutions at the position 512 are the 

alternations at the functional positions physiochemically non-conservative and might, 

therefore, influence LPS binding. In TLR5 substitutions at positions 82, 183, 207, 209, 216, 

264 and 342 might affect flagellin binding. At least some of the substitutions at the positions 

183, 207, 209, 216, 264 and 342 might alter the features of the flagellin-binding residues. In 

TLR7 there was no site with potentially functional effect identified by the analysis. 

 

Intriguingly, several sites in each receptor were identified as positively selected by several 

evolutionary studies conducted either in birds or in mammals [See Additional file 1, Table 

S10]. In TLR4 sites 205, 273, 274, 275 and 301 were detected in Galloanserae birds and 

mammals and sites 246, 270, 274, 301 and 406 were detected both in Galloanserae and other 

birds. Moreover, sites 343, 444, 471, 512, 521, 627 and 686 identified in the present study 

were in close proximity to some other positively selected sites identified in other taxa. Out of 

these, sites 270 and 471 might influence TLR-4-MD-2 dimerization, positions 343, 444 and 

471 LPS-binding and site 512 TLR4-TLR4 dimerization. In TLR5 sites 183, 209, 264, 314, 

342, 422, 525 and 532 were detected in Galloanserae birds and mammals and sites 209, 264, 

281, 293, 422 and 508 were identified both in Galloanserae and other birds. Furthermore, 

sites 216, 259, 379, 456, 468, 625, 647 and 659 identified in the present study were in close 

proximity to some other positively selected sites identified in other taxa. Out of these, sites 

183, 209, 216, 264, 342 and 379 might influence the structure of the flagellin-binding 

interface. In TLR7 sites 39, 99, 383 and 665 were detected in Galloanserae birds and 

mammals, no sites were consistently identified in Galloanserae and other birds and sites 3, 

565 and 700 that were identified in the present study were located in close proximity to some 
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other positively selected sites identified in other taxa. Out of these, sites none was located in 

the predicted ligand-binding region. 

 

Based on the evidence summarised above we may propose several sites that should be 

investigated in closer detail. Mainly the sites 270, 343, 444 and 471 in TLR4 and 180, 

183, 209, 216, 264, 342 and 379 in TLR5 are clear key candidates for further research on 

functional significance of selection acting on TLRs in birds. Since no selection on this site 

has been evidenced in mammals or other birds, we may hypothesise that the site 268 in TLR4 

may be of some special importance in the evolution of Galloanserae birds. Although we do 

not know the functional importance of the sites, based solely on congruence of the selection 

analyses in birds and mammals special attention should be also paid to positions 244-246, 

273-275, 301 in TLR4 and 293-294, 314, 342, 422, 525,532-533 in TLR5. 
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